Dynamical and stationary properties of on-line learning from finite training sets.
نویسندگان
چکیده
The dynamical and stationary properties of on-line learning from finite training sets are analyzed by using the cavity method. For large input dimensions, we derive equations for the macroscopic parameters, namely, the student-teacher correlation, the student-student autocorrelation and the learning force fluctuation. This enables us to provide analytical solutions to Adaline learning as a benchmark. Theoretical predictions of training errors in transient and stationary states are obtained by a Monte Carlo sampling procedure. Generalization and training errors are found to agree with simulations. The physical origin of the critical learning rate is presented. Comparison with batch learning is discussed throughout the paper.
منابع مشابه
On-line Learning from Finite Training Sets in Nonlinear Networks
Online learning is one of the most common forms of neural network training. We present an analysis of online learning from finite training sets for non-linear networks (namely, soft-committee machines), advancing the theory to more realistic learning scenarios. Dynamical equations are derived for an appropriate set of order parameters; these are exact in the limiting case of either linear netwo...
متن کاملA Flexible Link Radar Control Based on Type-2 Fuzzy Systems
An adaptive neuro fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part is presented in this paper. The capability of the proposed method (we named ANFIS2) for function approximation and dynamical system identification is remarkable. The structure o...
متن کاملSupervised learning with restricted training sets: a generating functional analysis
We study the dynamics of supervised on-line learning of realizable tasks in feed-forward neural networks. We focus on the regime where the number of examples used for training is proportional to the number of input channels N. Using generating functional techniques from spin glass theory, we are able to average over the composition of the training set and transform the problem for N → ∞ to an e...
متن کاملAdaptive Inverse Control of Flexible Link Robot Using ANFIS Based on Type-2 Fuzzy
This paper presents a novel adaptive neuro-fuzzy inference system based on interval Gaussian type-2 fuzzy sets in the antecedent part and Gaussian type-1 fuzzy sets as coefficients of linear combination of input variables in the consequent part. The capability of the proposed ANFIS2 for function approximation and dynamical system identification is remarkable. The structure of ANFIS2 is very sim...
متن کاملFault Detection of Anti-friction Bearing using Ensemble Machine Learning Methods
Anti-Friction Bearing (AFB) is a very important machine component and its unscheduled failure leads to cause of malfunction in wide range of rotating machinery which results in unexpected downtime and economic loss. In this paper, ensemble machine learning techniques are demonstrated for the detection of different AFB faults. Initially, statistical features were extracted from temporal vibratio...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 67 1 Pt 1 شماره
صفحات -
تاریخ انتشار 2003